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The formulation of equations of state for a continuous medium and gravitation-
al field is considered in the framework of the general theory of relativity, us-
ing the fundamental variational equation., The arbitrariness of determination
of equations of state is examined in detail, and problems of determining the
energy-momentum tensor for the medium and gravitational field are clarified
in the case of invariant dynamic and generally physical Euler's equations,
Obtained formulas and deductions are specifically defined for the gravitational
field in vacuum, The developed theories make possible a proper evaluation
of the essence of the various assumptions prevailing in the theory of the energy-
momentum pseudotensor and in the general problem of the possible form of
equations of state for physical models,

1, The variational equation, Letusconsider the four-dimension-
al pseudo-Riemannian space of events with metric signature (—, —, —, ) in the
observer's coordinate system with variables 2! (i = 1, 2, 3, 4) and in the coordinate
system with variables B! moving with the continuous medium in the space of events,
The dynamic equations and the equations of state for the gravitational field and the
medium are obtained within the frame-work of the general theory of relativity using
the variational equation of the form

8{ Adv+ow=0 (1.1)
Ve

where V, is an arbitrary four-dimensional volume of the event space; dr is an in-
variant elemeat of volume V, , and3Wis a functional defined below by the
Lagrangian A

A = A (g Ti¥, 0.T5%, zt, p4, Vipd, KAC) (1.2)

whete z;' = az'/9F (functions z' = z' (}') define the law of motion of the
medium); p4 are tensor components specified in the observer's coordinate system
that define various physical fields or physical properties of the medium; V, is the
symbol of the covariant derivative defined in the observer's coordinate system &; =

8/3z' are symbols of partial derivatives with respect to variables z'; KAC are
the nonvaried tensor componeats specified inthe related coordinate system; g;; are
contravariant components of the event space tensor in the observer's coordinate system,
and T;* are Christoffel symbols
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Ty* = 128" (— 0,815 + 0 + 9i83)

If irreversible processes are taken into consideration and, also, whea the coordin-
ate system is subjected to extemal effects, a certain, generally nonhglonomic,
functional § W*is included in the variational equation (1,1) [2 —4]. The theory
developed below is based on the assumption that §W?* = (),

Let us determine the system of subsequently used variations of determining
parameters. We denote the arbitrary function 14 (z') in the varied state by n'4
(¢) . Assuming that n'4 (z') diffem only slightly from 14 (z%) , the form of
variation of function dn4 is defined within first order smalls by the equality

A = 4’4 () — 14 (z) (1.3)
It will be readily seen that the definition (1.3) implies that
A = 0’4 — OmA = Gyt
Besides the variation dn4 we define the variation dnA
dnA = ond + 82Vind,  8at = 27 (§) — 2 (B) (L4
where Oz are variations of the law of motion of the medium and are components of
the four-dimensional vector,
The above definitions imply that if parameters 14 are tensor components, then
variation 9n4 and §mA are also tensor components of the same rank as n4,

Using the definition of variation & , for the quantity z,' and the Christoffel
symbols we can obtain [1)

orft = — 82°V it 4 27V 0c'
Oy = 1/2g" (— V, 0835 + V1984 + Vi984) =
Yo [— g¥878;% + g (8:°8;7 +- 8,°8:7)] V.Ogn,

For compouents KAC we have §KAC = ( , and for the variation of a volume
element we have the formula

3dt = (Vide* + Yagtidgy) dv
We also determine for functions 4 the variations &’

G’nA == anA + axi ainA (10 5)

If N are tensor components, the covariant derivative for n# can be defined by
an equality of the form

VinA = oA 4 FEI P (1.6)
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in which coefficients Fﬁz represent the sum of various products of Kronecker symbols,
Using coefficients Fg! the variation 8’ of tensor components m4 can be expressed
in terms of variation §

8'mA = dmA + 82" (— Vi + Byn4) = dnA— FAIT,yBexs

2 The Eulerequations and the functional §W.
variational of the action integral can be represented in the form

8§ Adr= § (63 + M adpA + Fda')dr — (2.1
§ Vi(PRost + Maopa 4 THpg, + THV Bg,) dr
Vs

where the following notation is used;

oA (2.2)
¥ L fpghyp2 08 Pl g ) —
2{g+ 8s+ [ (arﬁ a9,rF ™"
dA m X dA m
e (3 ) = 8" (31 &)}
[T ) P,j " 9,T,F
3A 2A
i 3 ( in ) 4 Ne
2 aa,,rb Wy TE 29,T ;" +e s,
1 3A
ks m..f.[gnx(br —- “rg‘m)_.
6 Ty
in M A
()
orYy 3Ty,
3A aA
g"(o" aa, I, I )]+V,N*“f
8A
P¥= — Py z¥ + av p."‘ Vind — AS*
3
oA dA AC
;== o e Viz s — ¥V, {2 v
i oz ) ’(x’ azf) KA 5 K
oA oA x aA
Ma=24_ v, Ml =—
awpA  oavpt’ vt
3A oA aA oA vt
= T 9, ; y{ E
In formulas (2,2) the quantities N*¥ = — N*®/ are arbitrary differentiable

functions of any arguments and §/8 I'y;* denotes the variational  derivative,
Quantities 0, T*Jj and ZT%%Y are by definition symmetric with respect to indices
i and j
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OV = @, TH/ — Tl kel . s

Taking into account formula (2, 1) for variations of the action integml we obtain
from the variational equation (1, 1) the system of Buler's equations and the functional
ow

=0, F;, =0, My =0 (2.9)

= { (Poct + Mops 4 THidg, + TH9V 3gy) nyds (2.4
z

where n; are components of the unit vector of the external normal to the three-dim-~
ensional surface 2 that bounds volume V, and do is an invariant element of surface
Z.

In classical theories (such as of perfect fluid, of elastic body, and of electromagn-
etic field) the equations that determine the terms of the integrand in §W are equations
of state, The quantities Pi* which appear in §W and are defined by formula (2. 2)
are similar to components of the energy- momentum tensor in the special theory of
relativity. Quantities of that type were used in [1,4 — 6] in the context of the general
theory of relativity, If the Lagrangian A is a four —dimensional scalar, the quanti-
ties P;* are components of a second rank tensor, but in the general case when A is
not a scalar, P;* do not define any tensors,

Definitions (2, 2) show that when Euler's equations (2. 3) are invariant, the quanti-
ties T*Y and TV in §W are determined by the variational equation with some
arbitrariness, owing to the presence. of the arbitrary function N . The definitions
(2.2) of quantities P and T in the case of invariable Euler's equations can also be
varied by supplementing the Lagrangian A by the divergent terms of the form V,Qi
where Qt are specified in the form of functions that define the medium and field
parameters, Thus, if Euler's equations and the functionsl §W expressed in the form
(2.3) and (2.4), respectively, correspond to the Lagrangian A , then the same Euler's
equations (2, 3) and functional §W of the form

= § (P %0+ M 4 \opA 4 TMIdg,y 4 THHV 35, — 8Q%) mdo

T TR y,0gt P = P 4 V,QF — 34,08

correspond to Lagrangian A 4+ V,Qi . In these equations P;’* are defined in conf-
ormity with [5].

The form of terms of the integrand in W substantially depends also on variations
of determining parameters in §W . The use of a particular system of variations in
O8W is, generally, a matter of convention, and is related to  considerations of
convenience and the possibility of physical interpretation of equations that define

8W . The selection of variation § defined by formuila (1.4) in the expremion for
functional 8W of the form (2.4) is based on the following reasoning. Fimst, when
variations § are used for scalar Lagrangians, the coefficients at variations aze always
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teasor components and, consequently are of an invariant geometric nature, Second,
in the case of known classic models of media the variational equation (1.1) is the
equation of energy when differentials along the world lines of points of the medium
are substituted for 8§ -variations, and the coefficients at variations W are defined
by the usual equations of state. For real increments the transition of the basic variat-
ional equation (1. 1) to the equation of energy can be used as the basis for establishing
the expression for A and in the general case fo that for §W*,

1t should be noted that the functional §W as a whole remains unchanged when,
owing to the presence of arbitrary functions NV or to the use of different variations of
determining parameters, the definition of terms of that functional varies, However,
when passing from Lagrangian A to Lagrangian A -+ V,Q the entire functional
8Wis changed.

3, Invariant properties of the variational equation,
Euler's equations (2. 3) and formulas (2. 4) for the functional § W were obtained for an
arbitrary dependence of the Lagrangian A on arguments appearing in (1,2). Below
we establish certain properties of Euler's equations and of the quantities P;* contained
in W and related to the additional requirement for the Lagrangian A to be a scalar.

Let us assume that the Lagrangian A is a four-dimensional scalar and, consequen-
tly, invariant with respect to 2 group of arbitrary transformations of the observer's co-
ordinate system, and calculate the varation of the action integral

8 § A dr

for the arbitrary (small) transformation ¥ == y' (') of variables z' of the observer's
coordinate system, For this it is sufficient to set in formula (2. 1) for the arbitrary
variation of the action integral the variations 82', 8g,; and Sp4 as follows;

8zt = &', 8g;; = —Vbn; — V,bny (3.1)
SpA = Ff pBV,onf
where within smalls ofthe finst arder &' = y* (/) — 2'and On; = g,;6n' and
the coefficients FfF are the same as in fornmla (1. 6) for the covariant derivative

V:u4 . Ssubstituting expressions (3, 1) into formula (2. 1) for the arbitrary variation
of the action integral we obtain

aaS Adv = S [2Vi0F + F; — MaVipA — vy (MAFARB) dnidt —  (3.2)
j Vi [(20% — MAFAfu® + P¥)oni +
(MA ¥FaipB — 2T%) Vion! — 2754V, V,8n, dr
Since A is assumed to be a scalar, we have

aa§ Adr=0 (3.3)



832 V.A. Zhelnorovich and L. I, Sedov

Taking into account formula (3,2), for the variation of the action integral at co-
ordinate transformation with §u' equal zero on surface Z, from (3. 3) we obtain the
identity

2ViBF - Fi— MAVipA — ¥y (M AFBIpB) = 0

which is satisfied only owing to the scalar properties of Lagrangian A, independently
of the fulfilment of Buler's equations. This identity also implies that on the assump-
tion that A is a scalar the second of Bqs. (2. 3) (obtained with variations 6z%)is a
corollary of the remaining Buler's equations,

Carrying out differentiation in the second integral of (3. 2) and collecting terms
containing variations §n' and their gradients, we obtain the following formula;

aa§ Adt = § {{F; —~ MAyph — VgP¥ — 2 T¥% (VR g + V., Rin) + (3.9

(= 5 MAPETWE 4 TT 4 V%) Rlom] 81 +
[— 205 -+ MAF SRS — PF 3 Vo (— MAF5ius + 2T%) +
5 T (RY g — R¥m) 4 (TP 4 TV g oy

TI R g Vb’ - (— MASFSTR® 4 2275 4 29,07
ViVmd’ + 27599,9,7 0} v

where the parentheses enclosing subscripts at tensor components denote symmertizat-
ion relative to these subscripts, and R, are compoaents of the curvature tensor of
the pseudo —Riemaanian space of events.

Using formula (3.4) we obtain from condition (3. 3) which defines scalar propert-
ies the system of identities

Fy— MaAVipA — VP — 2T (ViR + ¥ Rm) + (3.9)
(— ’/aMA’Faq !-t + T+ NN Ry =

~ 20 4 MAFAIUB — PX 4 Vo (— MAOF 5B + 21'?‘5;) +
1o T8™ (R g — R';‘m) + (@ T T Rogn +
T R mj= 0

— FA™M PpB 4 27 4 29 T3 =0

T(R‘Si)i =0

Similar identities were considered in [7] in the case when compoaents 7%
are symmetric relative to supenscrips k& and s, however, without taking into
account the arbitrary function N .

The first of identities (3. 5) shows that in virtue of Euler's equations (2.3) the
components of tensor P* satisfy the equation
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VP ¥ = — 2T kenj (ViR mi; + YV Rinij) + @8

(— YoM A’ Fh7uB + T 4+ Vi T™7y R%om
while the second of these identities implies that in virtue of (2. 3) components P;*
may be written as
P} =Yy (— MAFER® + 27%) + YT (R ng — Rigma) + (34
(I 4 T 4 T R+ T R mg

4, Pseudotensors of energy-momentum, Substituting in
formula (2. 4) which defines functional §W the tensor variations §’ (defined by equal-
ity (1. 5)) for variations § , we obtain

oW = § (102" + £0,00% 4 Oib'gy; + TR0 N gy + M pA)mydo (4D
b

where 5, £,*, and O are defined by

B 0N & oA A giMig.g — (4.2)
¢ 62; zy* + oV, A o 6510 gn;

T*"00 oy — MY+ —me 0, (NMV/=0), g =dot 2]
8 = — T"™9,g,; + N

ekij — Tk’ij__ Tklmfrzm — Tk&mirim

where NV,® = —N ;% are arbitrary differentiable functions, and 7% and ¥/
are defined by equalities (2.2). Components #,* satisfy in virtue of Euler's equations
the differential law of conservation

GV —gtk=0 (4.3)

and are usually called components of the energy-momentum pseudotensor, It will be
seen from (4. 2) that components of the pseudotensor V:?z,?f are determined by
the variational equation with an accuracy within the term 8, (N Y —g) . Note
that the law of conservation is here unrelated to the invariance of the Lagrangian,
*Determination of the energy-momentum pseudotensor using the invariance properties
of Lagrangian A yields the same formula (4, 2) with the same arbitrariness,

5, Transformation of functional O8W . Itisobviousthat
owing to the indicated arbitrariness of the definition of parameters £,0,and T in
8W it is not possible to attribute to these any physical meaning without some further
special assumptions. It is, however, possible to indicate an algorithm for a unique
determination of terms in §W [3 —5,8—12]. The respective transformationrelated
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to the decomposition of gradients V, of variations that determine parameters in
8W in terms of components tapgent and normal to surface 3 , is of the form

Vs = (8 — engn') V, + enn'V, = LoV,* + en, D/IDn (5. 1)

whete D/Dn = n'V, is the covariant derivative with respect to the normal to surface
Z; e = gyn'n’ is the sign indicator of the normal vector modulus, and V,* is

the covariant derivative on surface I in the coordinate system with variables u®

(@ =1, 2, 3). Coraponents {,* in formula (5, 1) are defined by the equality {,& =
Gobg, L' in which G%f are covariant components of the first metric tensor  of

surface 3 in the system of coordinates u® , and {g' == 92'/guP are components

of basis vectors tangent to ¥ . To obtain the second part of formula (5, 1) it is also

necessary to use the equality

8] —enpl = Lot

which links the normal vector components 7; with components of vectors '
tangent to surface 3.

In the case of reasonably smooth surfaces X and admissible functions and their
variations by substituting in formula (2.4) for §W the expressions (5, 1) for gradients
V, . it is possible to transform the formula for 8W to the form

. s D 5.2
W = S(nkpi*w + mM 4584+ {08y + T8 57 O8u) do 9

where
Tl = emgn, T, Ti) = n T — Vo* (5 T™) (5.3)

Using the derived equations of the theory of surfaces [15]
Vorls' = bagn®, Vo*ny = — ebogli®

where b, 5 are components of the second metric tensor of surface 2 ; the expression
for quantities T7)) in (5.3) can, also, be written in the form

Tl = g (T = 9.7 on, ) +
T* (ebagla®Ced — ba®miny), Do = G*bap

The quantities P,*ny, Tg;, and Tg) in (5. 2) are uniquely determined for a
specified Lagrangian A by the variational equation and are independent of the arbitr-
ary functions NV (this can be checked directly). Relationships at discontinnities and
boundary conditions that correspond to the selected Lagrangian are formulated [2, 4,

8 —127 using the above quantities determined at discontinuities and boundaries.

when A = A (R, g, p4, Vi p4, 2/}, KAC) the formula of type(5.2) for 8W

was derived by Sedov [4], and for §J¥ with noncovariant derivativesd/dn ==n'd;appeared
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in (10, 11] and in [3, 9] in the context of the special theory of relativity.

6. The classical general theory of relativity, Letus
now apply the derived formulas to a gravitational field in vacuum when the Lagrangian
A is defined by

1
A=—-R4+VQ (6.1)

where R is the scalar curvature of the space of events, % is the Finstein gravitational
constant, and Q' are specified functions whose form will not be defined here  (for
possible definitions of functions Q' see [5]). In this case Euler's equations for the event
space métric are expressed in terms of Einstein's equations

Ry —/yRgyy=0

where R;; = R'im; are components of the Ricci tensor and the functional 8W is
of the form

oW = [ (Pibat + T0g; + TV pgy— 8Q0)mds (5D

£

where ’ .

Pik = — —E;'Rbik + ViQk b 6iijQ]

T = —1,0%4 4 VN

T™ = o (698" — Y2 (2"g" + £g™)) + N*™

Formula (6, 2) for SW is given in [1] for Q! = 0 and N*¥ = 0, Functions
Q! were considered in [5].
Separating in (6, 2) the derivatives with respect to the normal we can express § W
in the form

(6.3)

W = S (P{knkbzi + Tédgi + T4 'ﬁD,'{ 8¢y — nkmk) do
where

TH = -—'-(gﬁ en'n’)

Téh=— —nkgkg + -2- (banini — b8, Lq)

Using the noncovariant variations §’g;; we obtain the following expression for §W:

oW = { (t482' + 11082 + 6Vy'g; + T*a8'g, — ¥V meds (6.4
z
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where

{
V—~g
V=85 @ — e ™ digim + 820% — 8200 + N}

] l i ms
15 = o (€Y — £™g™) Oigm; + N&

a, % {6.5)

1
tF = = (R;* — 4 R&/}) +

0% = -,;i— [(g¥'g™ — g"'g™) T + (g¥'g™ — g*'g™) Tyl —
Y+ 0, (/g N

Components 7%/ in (8,4) are defined by the equality (6. 3),

Since in virtue of Efnstein's equations the mixed components of the pseudotensors
of the gravitational field energy momentum, proposed by various authors, are repres-
ented in the form of antisyrometric components with three indices, hence it is possible
to obtain as #;* in (6,5) all of the proposed formulas for the energy- momentum
pseudotensors with mixed indices even when Qf = ( and 6Q' = 0 merely by the
choice of the arbitrary functions N,**, For example, function N;* = 0 corres-
ponds to the Lorentz pseudotensor, and for the Einstein pseudotensor we have

N = o {— " — 678" O —

"Vé"“-—'f? 8indm [(— 8) (g™’ — g"‘g""‘)l}

For Qiz= 0 the preceding results are also obtained by the overdetermination
of N;/®. In particular, if in the Lagrangian (6, 1) functions Q' are defined by the
equality

) T : : 1 3i
Q= 5 (8T — g'T0) = g S l(— ) 8"

the Lagrangian A is independent of derivatives of Christoffel symbols, and formula
(6.2) for W becomes

W = S (t*8z' + N ¥,z 4 0%¢'g;; + N**V3 8 gy nydo (6.6)
z
where N = — N* and N* — _ N9% are arbitrary, and for ¢,* and
9% we have
i = < (RY — 5 RO~ 7

'-21;- a, {V*_i_mg' Einlm [(— g) (""" — g™¢ m)]} +

1 L Vg
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o = % [(gg" — g*g’? — g"g'") Tip +

(—- gUg™ + g"g’* + g*g™) T + Vi_j; 8,(V —g N™)

According to Einstein when N;** = O, components #;* in (6,7) are components

of the pseudotensor of the gravitational field energy-momentum,

9.

10,
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