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The f~~~~ of equations of state for a continuous medium and gravitation- 
al fleld is mered in the framework of the general theory of niativity, as- 
ing the fundamental variatiaaal equation. The arbitrarbu8 of &termination 
of equatictns of state is examined ln detail, and problems of detcrmbing the 
energy-momentum tensor for the medium and gravitational field are clarified 
in the case of iuvariant dynamic and g-rally physical l%lex’s equations. 
Obtained formulas and deductions are specifiCally defined for the gravitational 
field fn vacuum. The developed theories make possible a proper evaluation 
of the essence of the various assumptions prevailing in the theory of theenergy- 
momentum pseudotensor and in the general problem of the possible form of 
equations of state for physical models. 

l. The variational equatioo. Leturcondderthcfour-dimension- 
al pseudo=Rlcmannian gurce of events with ytdc signature (-, -, -, +) in the 
observer’s coordinate system with variables 2’ (i = 1,2,3,4) and in the coon&We 
system w&b variables gK moving with the conttnu~ medium in the space of eve&. 
The dynamic e@Hions and the equatianr of state for the gravitational field and the 
medium are obtained with& the frame- work of the general theory of relaff vity using 
the variational equation of the form 

(1.1) 

where V, is an arbitrary four4ime&.nxal volmne of the event space; d% tc an in- 
variant element of volume V, , and alibis a functional defied below by the 
Lagrangian A 

(1.2) 

where x,* = ax< j agj (functions cz” = xi (gj) define the law of motion of ttu 
medium): pA are tensor components spucified in the observer’s coordinate system 
that define various physical fields or physical properties of the medium; Vi is the 
symbol of the covariant derivative defined in the observer’s coordinate system 3, = 
a/&z! are symbols of partial derivatives with respect to variables xi; RAG are 

the nonvaried tensor components specified fntberelated coordinate system; glf are 
cmtravaatant components of the event space tensor in the observer’s coordinate system, 
and I?gj’ are Cbristoffel symbols 
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I?$ 7 ‘iSgka (- alBi.i 4” a&8j + ajg*i) 

If irreversible processes are taken into consideration and, also, when the coordin- 
ate system is subjected to external efkcts, a ccrtaiu, generally nonholonomic, 
functional 81iv* is included in tbe variatiorral equation (1.1) [2 -43. The theory 
developed below Is based on the assumption that 8’w* = 0. 

Let us determine the system of subsequently used variations of determining 
parameters. We denote the arbitrary function q A (SF*) in the varied state by q’A 
(z’) s Assuming that Q’A (z*) differs ouly. s~h~y from qft (z’) , the form of 

variation of fuixtion @A is defined wHb&i first order tmaib by t&e equality 

It will be readily seeu that the def&iition (1.3) implies that 

a4tlA == &q’A - a*+ = f&a+ 

Besides the variation (3rlA we define the varPation 6@ 

8qA = a@ + &T*qA* 4%” = x*~(&~) - 2 (F;3 (1.4) 

where 6d are variations of the law of motion of the medium and are components of 
the ~-~i~l vector. 

The above defWtions imply that if pazamcrk;# q* are tensor COmpan&ntrr, thea 
variation &rA and &qA are also tensor compoW&s of the same rank as q”. 

using the de&Won of variatlao d , ffxttkqIWltity Xii a&the CWl 
symbols we can obtain [I] 

For components K&C we have ~~Ac = 0 * and for the variation of 8 vo;lttrai& 
element we have the form&a 

. 
MT = (Vi&* + “Jg”dgij) dr 

We also determine for functions q-4 the variations 6’ 

6’qA = @A + &xi &VA (1.5) 

If qA are textsor components, the covariattt dedvative for q A c9n be defined by 
an ewality of the farm 

V& = a*rtA + Fi%jV (1.6) 
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in which coefficients F$! represent the sum of various product of Kronecket symbols, 
Using coefficientr FBs Aj the variation 6’ of tensor components qA can be expressed 
in terms of variation 6 

2. The Euler equations and the functional &W. 
variational of the action integral can be represented in the form 

6) Ad%% 
$ 

~~~3~~~ + MA&~ + F#) d% - 
V* . 

s vg (P*‘&x~ + M~~lbp-4 + Tk%gg + T”‘V,&) dz 
V4 

(2.1) 

In formulas (2.2) the quantities Nkai = - N’“” are arbitrary differentiable 
functions of any arguments and 6/B frjk denotes the vadatfonal derivative. 
@antities @, T*3, and Tkati are by definition symmetric with respect to indices 

Z and j 
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Taking into account formula (2.1) for variation8 of the action integlal we obtain 
from the variational equation (1.1) the system of atlu’s equations and the functional 
6W 

e’j = 0, FL = 0, MA = 0 (2.3) 

bw = $ ( P,k&i + M,ikdpA + T”*& + TM5VAg,) nxdtr (2.4) 
z 

where nk are componenb of tke utit vector of the timal normal to the he-dim- 
exuional surface I: that bumds volume V, and da is an invadant element of atrface 

Z. 
In classical theories (such as of perfect fluid, of elastic body, and of eleetromagn- 

etic field) the equatiau that determine the termr of the in in &W are eqnatkom 
of state. The quantities Prk which appear in 8W and are defined by formula (2.2) 
are similar to compooleuts of the erkm- momentum tea8or in the spezial theory of 
relativity. QuanUtior of that type were used in Cl.4 - S] in the corhxt of the general 
theory of relat&ity. If the Lagnngfan A is a fakr -Mw rcabr, the qnanti- 
ties Ptk are components of a second rank teruor, but in ttk general case when A is 
not a scalar, Ptk do not define onytuasces. 

Definitim (2.2) show that when E&r% equatiapr (2.3) are invariant, the quanti- 
ties TMf and Tk& in 6Waredctezmimd by the v&datloDpl aql~ation with some 
arbitrarinetr, owing to the presence. of the arbitrary Zuacfloi~ N . The dcgaitions 
(2.2) of quantities P and T in the case of invariable Ektler’s equations can ah be 
varied by supplementing the Lsgrangian A by the diqt tezmt of the. form VI@, 
where sa’ are specified in the form of functions that define the medium and field 
parameters. Thus, if EuWs equation8 and the kulctiasal 8W eze in the form 
(2.3) and (2.4), respectively, correspmd to the LagrwrgrCrn A , then th same W&r’s 
equations (2.3) and functional 6 W of the form 

T ‘kii = Tkij _ ‘/zQkgij, Pi” = P*” + ViQk - 8ikVjd 

correspond to Lagrangian A + V&i , In these equathu Pifk are defkred in conf- 

ormity with [S]. 
The form of terms of the ia%tegraA fn 8W s&&MaUy dtpcsuQ at0 OPI vadations 

of determining parameters in 8W . The UIc of a part&Mar system of variation8 in 
6W is* getW#auy, a nIatt8r of crxAventWlB aad is l+tted to Cxulaiduoti~ of 

convM aad thy pcmiMli@ of pbydd intupDotrtlas of cqwtkam f&at defbe 
8w l The miadiaa of variation 6 d&&d by fowrrh (1.4) in the &W for 

functional 8 W of the form (2.4) is based on the follouhg reasoning. First, k&n 
variatiant 6 are used for scalar Lagrangiana, the coefficients at variations an always 
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tenm componenls and, consequently are of an invariant geometric nature. Second, 
in the case of known classic models of media the variational equation (1.1) is the 
equation of energy when differentials along the world lines of points of the medium 
are substituted for 6 -variatiaas, and the coefficients at variations 6w are defined 
by the usual equations of state. For real increments the transition of the basic variat- 
ional equation (l. 1) to the equation of energy can be used as the basis for establishing 
the expression for A and in the general case fo that for 6W*, 

It should be noted that the functional 6W as a whole remains unchanged when, 
owing to the presence of arbitrary fimctions N or to the use of different variatiau of 
de&mining parameters, the definition of terms of that functicnal varies. However, 
when passing from Lagrangian A to Lagrangian A + V,Q* the entire functiatal 

GWis changed. 

3. Invariant properties of the variational equation. 
Euler’s equatiaas (2.3) and formulas (2.4) for the functional 6w were obtained for an 
arbitrary dependence of the Lagrangian A on arguments appearing in (1.2). Below 
we establish certain properties of Euler’s equations and of the quantities Pik contained 
in 6wand related to the additional requirement for the Lagrangian A to be a scalar. 

Let us assume that the Lagrangian A is a four-dimensional scalar and, consequen- 
tly, invariant with respect to a group of arbitrary transformations of the observer’s co- 
ordinate system, and calculate the variation of the actiaa integral 

for the arbitrary (small) transformaUon $ = p’ (2) of variabler 2’ of the ObacrvePs 
coordinate system, For this ft is sufficient to set in formula (2.1) far the arbitrary 
vadatia of the action integral the vadations 6zi, 8gti and SPA as followsr 

6x* = i3$, 6g,, = _V,hj - V,6q, (3.1) 

&PA = Fit $rV& 

where within smalls of the first ordu &$ = yt (dj - xi and 6rjj = g& and 
the coefficients Fit are the same as in formula (1.6) for the covadant derivative 

&PA l 
substituting expressions (3.1) into formula (2.1) for the arbitrary variation 

of the acticn integral we obtain 

8~ S Ad% s 1 [2V&ik + Fi - MAVENS - Vk (MAF$$~)J 8$dt - (3.2) 
V4 V4 

s vk l@ik - N&pB + Pi3 6~’ + 

- 2T3) v&f - 2Tk”‘V,V&] dr 

Since A is assumed to be a scalar, we have 

(3.3) 
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Taking into accamt formula (3.2). for the variatiao of the a&ion irk-l at co- 
ordinate trauformotioa with &qi egual zero on surface z, from (3.3) we obtain the 
identity 

which is satisfied only owing to the scalar properus of Lagrangian A, independently 
of the fulfilmcut of MePs equations. This identity also implia that on the aaump- 
Ken that A b a scalar the rccmd of Bpt. (2.3) (obtained witk vadatianr &xi ) is a 
corollary of the FNnaiWg Euler’s eQlaKcas* 

Carrying att differa&iaK~ in the secad fntqal of (3.2) and coiiecKng terms 
containing variaKons 8qi and their gradients, we obtain the following formula: 

whtrc the perentkse en&&g axtecri 
! 

b at tensor compts denok sy~~~t~ 
ion relative to these subscdpts, and R.J,~ arc compoaenb of tbc curvataue tcrorar of 
thepseudo-WRLemrnniaa *cc of events. 

using f0nnul.a (3.4) we obtain from condition (3.3) which defiaes scalar proput- 

Similar idenKKe!a were cc&W in pj in the case when components 
are symmetric niaKve to supepcrfpb k and s, however, withat t&&g 
acccunt the a&trary functfon N . 

The first of idcnKKtr (3.5) shows that in virtue of Euler’s equaUoM (2.3) 
components of tensor P*’ satisfy the equation 

TkJ” 

into 

the 
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4. Pseudotensors of energy=momentum. Snbstturting in 
formula (2.4) which defines functional 6W the tensor variations 6’ (defined by equal- 
ity (Z 5)) for variations 6 , we obtain 

8W = $ (tikhxi + tikV,&xi + ~ij~~g~~ + T~~~~~~rg~ + M~k~~A) n&s (4.11 
r 

where v, hk8, and Ff aredefined by 

w&ru: Nik8 = --Np are arbitrary ~~~~1~ functions, and !+?aii and Tr@ 
are defined by equalities (2.2). Components trk satisfy in virtue of Euler’s eqnations 
the differential law of conservation 

and are nsually called components of the ~e~y-~rn~~rn pseudotensor. It will be 
seen from (4.2) that components of the pseudotensor 1/q&* are determined by 
the variational equation with an accuracy within the term 8, (Nfk’ m . Note 
that the law of conservation is here unrelated to the invariance of the Lagrangian, 

ADetermination of the energy-momentum pseudotensor using the invariance properties 
of Lagrangian A yields the same formula (4.2) with the same arbitrariuess. 

5. Txanrf ormation of functional bW. ~~~vi~s~at 
owing to the indicated arbitrariness of the definition of parameters t, 0, and T in 
SPY it fs not possible to attribute to these any physical meaning without some further 

special assumptions. It is, however, possible to indicate an algorithm for a unique 
determination of term in 8w p -5, S-121. The respective transformation related 
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to the decompositi~ of gradients v, of variations that determine parametess in 
B’liv in terms of components tangent and numal to auface 2 , is of the form 

where DIDn = n”V, is the covariant dwcivative with respect to the norm& to aurfaee 
r;; e== ~@&%i is the s@l fndfcator of the mxmal vector modufus, and 9,* is 

the covkiant derivative on surface Z: ia the coordinate system with varlabteo rsQ 
(a = i, 2, 3). CoriI~ts s P in formula (5.1) are defWd by the equal@ f;p = 

Wgai c$ in which CWJ are cavarlant coqonents of the first metric t-r of 
surface r: fn the system of coo~B~tes ua , and bi = ax%3uS an cornpo~8~ 
of basis vectors taqpt to 2 . To c&W the second part of formula (5. I) it is also 
neceokzry to w5 tfie equaffty 

82 - ES& += i&“60 

which l&ks the normal vector comporlents % with WmprxWnts of vM.oxs {a* 
tangent to surface Z: . 

In the case of reasoubly smooth surfaces X and admissible ftmctiont and their 
variations by ~~~~ in fomurla (2.4) for 6w the @~WSWU (5.1) for gradienta 

Q, _ it is p&b@ to ttamform the formula for 8w to Be farm 

where ba8 are corn~~~~ of the second metric texaaoz of surface X ; ttm expssion 
for quantities T$) in (5.3) can, aIso, be wdtteu in the form 
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in [lo, 111 and in [3, S] in the context of the special theory of relativity. 

6. The classical general theory of relativity. Letus 
now apply the derived formulas to a gravitational field in vacuum when the Lagrangian 

A is defined by 

A =&R+V,SY (6.1) 

where R L the scalar curvature of the space of events, x 
coastant, and @ 

is the anstein gravitational 
are specified functions whose form will not be defMd here ( for 

possible definitions of functions !$ see [S]). In this case Euler’s equations for the event 
space m&k are expressed in terms of Einstein’r equations 

Rti- ‘lsRgti = 0 

where R,i = R& are components of the Rfcci tensor and the functional 6w is 
oftheform 

whexe 
pit = - &R&t + V$ik - &~VjSl’ 

(6.3) 
TN = - l/,Qkg’cr”l + V,Nwi 
y’k’” I: _& [gtigk* _ 1/z (gi’8k + gj*g”)] + Nkdj 

~ctrmula (6.2) fa 6 W is given in [1] for 62’ = 0 and Nkti = 0 , ~unctiont 
8’ were considered in [5& 

Separating in (6.2) the derivatives with respect to the normal we can express 8 W 
inthefam 

Where 

. T::, = + tg*j - minj) 

Using the noncovariant variations 6’grj we obtain the following expression for 6 W: 

8W = S (ttGX* f tpa'a,&X" $- Bkii8’gij + TkNija,8’gG - &‘Q*) nk &a (6.4) 
): 
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(gkmlP - gkfETJm) ajgim + 

_ gk”g”‘) r;, + (gk’g” - g”sg”) &I _ 

Corners Tktii in (6.4) are def&cd by the e~&~~ (6.3)” 
Since Ln virtue of Einstcin‘r cquatfont the mixed componcnt~ of the p8cudotwwors 

of the gravitatimal field ewqp momurtum, proposed by various authors, are repres- 
ented fn the fozm of aMqmmcWo ~W~~~~~ hatcsittspc#i&e 
to obtain as Cl k in (6.5) all of the propwd formulas for the 
pseudotewxs with mixed indicts even when 52” = 0 and 6@ = 
ohok% of the arwrary &m&au ivt” . For hjcaRtpk 
ponds to the ~,orentz pseudotensor, and for the lBsk.in p&udotctwr we have 

up = & { - igkmgj* _ gk~g~m~ agsa - 

*ginam I(- gjtg*gsm - g”p@v} 
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_ gijg8k + $igjk + giJg4k) rl”,] + 

According to Einstein when Nlks = 0 , components ttk in (6.7) are components 
of the pseudotensor of the gravitational field energy-momentum. 
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